Earth's earliest biosphere-a proposal to develop a collection of curated archean geologic reference materials.
نویسندگان
چکیده
The discovery of evidence indicative of life in a Martian meteorite has led to an increase in interest in astrobiology. As a result of this discovery, and the ensuing controversy, it has become apparent that our knowledge of the early development of life on Earth is limited. Archean stratigraphic successions containing evidence of Earth's early biosphere are well preserved in the Pilbara Craton of Western Australia. The craton includes part of a protocontinent consisting of granitoid complexes that were emplaced into, and overlain by, a 3.51-2.94 Ga volcanigenic carapace - the Pilbara Supergroup. The craton is overlain by younger supracrustal basins that form a time series recording Earth history from approximately 2.8 Ga to approximately 1.9 Ga. It is proposed that a well-documented suite of these ancient rocks be collected as reference material for Archean and astrobiological research. All samples would be collected in a well-defined geological context in order to build a framework to test models for the early evolution of life on Earth and to develop protocols for the search for life on other planets.
منابع مشابه
When Did Photosynthesis Emerge on Earth?
Life began very early in Earth's history, perhaps before 3800 million years ago (Ma) (1), and achieved remarkable levels of metabolic sophistication before the end of the Archean around 2500 Ma (2, 3). The great antiquity of our biosphere might indeed illustrate how easily life can arise on a habitable planet, but it also portends the challenges that confront our efforts to become intimately fa...
متن کاملPhosphogenesis in the 2460 and 2728 million-year-old banded iron formations as evidence for biological cycling of phosphate in the early biosphere
The banded iron formation deposited during the first 2 billion years of Earth's history holds the key to understanding the interplay between the geosphere and the early biosphere at large geological timescales. The earliest ore-scale phosphorite depositions formed almost at ∼2.0-2.2 billion years ago bear evidence for the earliest bloom of aerobic life. The cycling of nutrient phosphorus and ho...
متن کاملCharacterization of Reconstructed Ancestral Proteins Suggests a Change in Temperature of the Ancient Biosphere
Understanding the evolution of ancestral life, and especially the ability of some organisms to flourish in the variable environments experienced in Earth's early biosphere, requires knowledge of the characteristics and the environment of these ancestral organisms. Information about early life and environmental conditions has been obtained from fossil records and geological surveys. Recent advan...
متن کاملMicroaerobic steroid biosynthesis and the molecular fossil record of Archean life.
The power of molecular oxygen to drive many crucial biogeochemical processes, from cellular respiration to rock weathering, makes reconstructing the history of its production and accumulation a first-order question for understanding Earth's evolution. Among the various geochemical proxies for the presence of O(2) in the environment, molecular fossils offer a unique record of O(2) where it was f...
متن کاملThe geobiological nitrogen cycle: From microbes to the mantle
Nitrogen forms an integral part of the main building blocks of life, including DNA, RNA, and proteins. N2 is the dominant gas in Earth's atmosphere, and nitrogen is stored in all of Earth's geological reservoirs, including the crust, the mantle, and the core. As such, nitrogen geochemistry is fundamental to the evolution of planet Earth and the life it supports. Despite the importance of nitrog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Astrobiology
دوره 3 4 شماره
صفحات -
تاریخ انتشار 2003